Calculation of Motor Power Dissipation for Different Motion Profiles

Symbols:
$\mathrm{X}=$ Distance to travel in meter
$\mathrm{T}_{1}=$ Acceleration time in second
$\mathrm{T}_{2}=$ Coasting time in second
$\mathrm{T}_{3}=$ Deceleration time in second
$\mathrm{T}_{4}=$ Stop time in second
$\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}=$ Time to move
Duty Cycle $=\frac{T}{T+T_{4}}$
$\mathrm{V}_{\text {Peak }}=$ Peak velocity in meter / second
$a_{1}=$ Acceleration in meter / second ${ }^{2}$
$a_{3}=$ Deceleration in meter $/$ second 2
$F_{1}=$ Force during acceleration in Newton
$\mathrm{F}_{2}=$ Force during coasting
$F_{3}=$ Force during deceleration in Newton
$\mathrm{F}_{4}=$ Force during stop time
$\mathrm{F}_{\text {rms }}=$ The Root Mean Square (RMS) of the force
$\mathrm{m}=$ Total moving mass, mass of the motor + all other masses attached to it in Kg
$\mathrm{I}_{\mathrm{rms}}=$ The Root Mean Square (RMS) of current in Amp
$\mathrm{K}_{\mathrm{f}}=$ Force constant in Newton / Amp
$\mathrm{K}_{\mathrm{e}}=\mathrm{BEMF}$ constant in Volts / meter / second
$R=$ Resistance of the motor in Ohm
$f=$ Frequency in Hz
$P=$ Power dissipation in Watt

Trapezoidal Velocity Profile

$\mathrm{X}=0.5 V_{\text {peak }}\left(T_{1}+2 T_{2}+T_{3}\right)$
$V_{\text {peak }}=\frac{2 x}{\left(T_{1}+2 T_{2}+T_{3}\right)}$
$a_{1}=\frac{V_{\text {peak }}}{T_{1}}=\frac{2 x}{T_{1}\left(\left(T_{1}+2 T_{2}\right)+T_{3}\right)}$
$a_{3}=\frac{V_{\text {peak }}}{T_{3}}=\frac{2 x}{\left(T_{3}\left(\left(T_{1}+2 T_{2}\right)+T_{3}\right)\right)}$
$F_{1}=a_{1} m=\frac{2 \times m}{\left(T_{1}+2 T_{2}+T_{3}\right)\left(T_{1}\right)}$
$F_{2}=$ Friction force
$F_{3}=a_{3} m=\frac{2 \times m}{\left(T_{3}\left(T_{3}+2 T_{2}\right)+T_{3}\right)}$
$F_{r m s}=\sqrt{\frac{F_{1}^{2} T_{1}+F_{2}^{2} T_{2}+F_{3}^{2} T_{3}+F_{4}^{2} T_{4}}{T_{1}+T_{2}+T_{3}+T_{4}}}$
$I_{r m s}=\frac{F_{r m s}}{K_{f}}$
$\mathrm{P}=R I_{r m s}^{2}$
$F_{r m s}$ Should be equal or less than the CONTINUOUS FORCE of the motor.
P should be equal or less than the MAX CONTINOUS POWER of the motor.

Trapezoidal Velocity Profile with Minimum Power Dissipation

If $F_{2}=F_{4}=0$ and $T_{1}=T_{2}=T_{3}=\frac{T}{3}$
Then $a_{1}=a_{3}=a=\frac{(4.5 X)}{T^{2}}$
$F_{r m s}=3.67 m\left(\frac{X}{T^{2}}\right) \sqrt{\text { Duty Cycle }}$
$I_{r m s}=\frac{3.67 m\left(\frac{X}{T^{2}}\right)}{K_{f}} \sqrt{\text { Duty Cycle }}$
$V_{\text {peak }}=\frac{1.5 \mathrm{X}}{T}$
$\mathrm{P}=\mathrm{R} I_{r m}^{2}$

Triangular Velocity Profile with Fastest Move Time

If $F_{2}=F_{4}=0$ and $T_{2}=0$

Then $a_{1}=a_{3}=a=\frac{4 X}{T^{2}}$
$F_{\text {rms }}=4 m\left(\frac{X}{T^{2}}\right) \sqrt{\text { Duty Cycle }}$
$I_{r m s}=\frac{4 m\left(\frac{X}{T^{2}}\right)}{K_{f}} \sqrt{\text { Duty Cycle }}$
$V_{\text {peak }}=\frac{2 X}{T}$
$\mathrm{P}=\mathrm{R} I_{r m}^{2}$

Sinusoidal Profile

$x(\mathrm{t})=\frac{X}{2} \sin (\omega t) \quad$ Position Equation
$v(t)=\frac{x}{2} \omega \cos (\omega t) \quad$ Velocity Equation
$a(t)=-\frac{X}{2} \omega^{2} \sin (\omega t) \quad$ Acceleration Equation
$a_{\text {peak }}=+\frac{X}{2} \omega^{2}$
$a_{r m s}=\frac{\sqrt{2}}{2} \frac{X}{2} 4 \pi^{2} f^{2}$
$a_{r m s}=13.956 X f^{2}$
$F_{r m s}=13.956 m X f^{2}=\frac{13.956 m X}{T^{2}}$
$I_{r m s}=\frac{13.956 m X}{K_{f} T^{2}}$
Velocity $_{\text {peak }}=\frac{\mathrm{nx}}{T}$
$P=R I_{r m s}^{2}$

